
JTiger 2.1 User Documentation

Build Number: 0376
Build Time: 2006-07-28 01:50.16.218 CET (GMT +1)

http://jtiger.org/

Contents

1. Introduction

• 1.1 This Document
• 1.2 What is JTiger?
• 1.3 Why use JTiger?
• 1.4 System Requirements
• 1.5 Download Package Structure

2. Writing Test Fixtures

• 2.1 What is a Test Fixture?
• 2.2 What is a Test Case?
• 2.3 Best Practices

3. Executing Test Fixtures

• 3.1 Executing Test Fixtures Using the API
• 3.2 Executing Test Fixtures From the Command Line
• 3.3 Executing Test Fixtures From the Apache Ant Task
• 3.4 The Set Up Tear Down implementations
• 3.5 The Test Definition implementations
• 3.6 The Fixture Results Handler implementations
• 3.7 Halting Test Execution When a Failure Occurs
• 3.8 Test Case Categories

4. Making Assertions in Test Cases

5. The Apache Ant Task

JTiger 2.1 User Documentation

- 1 -

http://jtiger.org/

6. Executing JUnit Test Cases

7. Annotation Reference

• 7.1 Overview
• 7.2 Category
• 7.3 ExpectException
• 7.4 Fixture
• 7.5 Ignore
• 7.6 Repeat
• 7.7 SetUp
• 7.8 TearDown
• 7.9 Test

8. The Self Test Fixtures

• 8.1 Overview
• 8.2 The Test Report
• 8.3 The Code Coverage Report

9. Example Scenario

• 9.1 Overview
• 9.2 Some Simple Test Fixtures
• 9.3 Executing the Test Fixtures From the Command Line
• 9.4 Executing the Test Fixtures From the Apache Ant Task
• 9.5 Executing the Test Fixtures Using the API

10. JTiger User Community

• 10.1 IRC (JTiger live chat)

11. Future Direction for JTiger

Appendix A. Executing JTiger unit test cases using an Integrated Development
Environment

Appendix B. Credits

JTiger 2.1 User Documentation

- 2 -

1. Introduction

1.1 This Document

This document is intended as an introduction to the JTiger unit test framework
and tools. This document is complemented by the JTiger Javadoc API
Documentation, which is included with the JTiger package download. It is
intended that the Javadoc is used as a reference during unit test development
with JTiger. This document will inevitably contain some redundancy with the
Javadoc reference material.

This document is available in several file formats:

• FO (XML Formatting Objects)
• HTML (HyperText Markup Language)
• MIF (Media Interchange Format)
• PDF (Portable Document Format)
• PS (PostScript)
• TXT (Plain Text)

1.2 What is JTiger?

JTiger is a unit test framework and tools for the Java 2 Platform. The framework
provides a useful abstraction on which to write unit test fixtures and unit test
cases. JTiger tools provide functionality that is often desired in software unit
testing environments. JTiger development encourages Test Driven Development,
though it doesn't mandate it, and any unit testing software development
technique is sufficient. JTiger makes heavy use of the Java Programming
Language 1.5 features; annotations, generics, variable argument lists, and more.
JTiger encourages developers to document unit test fixtures and unit test cases
in order to provide a robust, and easily maintained unit test and regression
harness.

The JTiger framework provides a published and documented API should the
need arise to extend its functionality. An example of extending the JTiger
framework, is the ability to execute test cases that are written using the JUnit unit
test framework. The JUnit plugin implementation classes are included as part of
the JTiger framework.

1.3 Why use JTiger?

JTiger 2.1 User Documentation

- 3 -

http://testdriven.com/
http://java.sun.com/j2se/1.5.0/docs/guide/language/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/varargs.html
http://www.junit.org/
http://www.junit.org/

JTiger makes every effort to ensure a robust unit test harness by providing a rich
set of tools, and a reliable, usable framework on which to develop unit test cases.
JTiger is an implementation that is based on improvements in software
development methodologies, such as eXtreme Programming (XP), which have
matured since their inception.

JTiger has been implemented using the same techniques that it encourages,
specifically, Test Driven Development. JTiger includes its own unit test and
regression harness with 100% method coverage. This aids in new or modified
requirements for JTiger that arise in the unforeseen future. The JTiger source
code base has been designed to ensure the absolute maximum possible amount
of decoupling of components and encapsulation such that future enhancements
will not have a negative impact on future versions on JTiger.

1.4 System Requirements

JTiger requires that tests are executed using a Java Virtual Machine version 1.5
or higher. This does not mean that the code under test must be written using
Java 1.5 language features. The software under test may target any JVM version
such as 1.2, 1.3 or 1.4. It is merely the test run that must execute under a JVM
version 1.5. JTiger is capable of executing test cases that have been written
using the JUnit test framework.

1.5 Download Package Structure

•
/jtiger.jar

The JTiger Java archive binary file. This file contains the classes that are
necessary for using JTiger. Make this file available to your Java Runtime
Environment to use JTiger. This typically involves specifying jtiger.jar in the
Java classpath.

•
/src/

The JTiger Java source code directory. This directory contains the source
code to JTiger.

•
/test-src/

The JTiger Java test source directory. This directory contains the source

JTiger 2.1 User Documentation

- 4 -

http://testdriven.com/
http://java.sun.com/j2se/1.5.0/download.jsp
http://www.junit.org/

code of the unit test harness for JTiger. This source code is useful for
determining how a particular feature of JTiger is intended to be used or how
it works and is considered a formal and complete specification of the
requirements of JTiger.

•
/doc/javadoc/

The JTiger Javadoc API documentation directory. This directory contains the
Java API documentation to every public JTiger API feature. The JTiger Java
API documentaton is intended to be used as a reference when using JTiger.
Of particular interest for reference is the package documentation for each
JTiger package which gives an overview of the objective of that particular
package.

•
/doc/userdoc/

The JTiger user documentation directory. This directory contains this
document in a number of different file formats.

•
/doc/test-report/

The JTiger test result report directory. This directory contains a JTiger test
report using the HTML fixture results handler. A 100% success rate in the
report indicates that JTiger functions correctly and as specified. You may
generate your own test report in the same format by using the JTiger
package org.jtiger.report.html. See the package documentation for more
details.

•
/doc/test-coverage-report/

The JTiger test code coverage report directory. This directory contains a
report indicating how much of the JTiger source code was executed during
unit test execution. The JTiger test source code aims to achieve 100% class
coverage and 100% method coverage during unit test execution i.e. all
JTiger methods or all JTiger classes are executed at least once during unit
test execution.

•
/samples/

The JTiger sample source code directory. This directory contains all sample
source code that is used in JTiger documentation.

JTiger 2.1 User Documentation

- 5 -

2. Writing Test Fixtures

2.1 What is a Test Fixture?

A JTiger test fixture is a logical grouping of test cases. A JTiger test fixture is a
single Java class that contains zero or more test cases, which are methods in
that class. A simple test fixture with one test case follows:

package org.jtiger.samples;

import org.jtiger.framework.Test;
import static org.jtiger.assertion.Basic.assertEqual;

public final class ExampleTestFixture
{

@Test
public void exampleTestCase()
{

// assert that two plus two equals four.
assertEqual(4, 2 + 2);

}
}

A JTiger test fixture class may optionally be annotated with
org.jtiger.framework.Fixture. This annotation is used only for documentation
purposes - it is not a requirement that test fixtures use it. A test fixture class may
specify the categories that its test cases are in by using the
org.jtiger.framework.Category annotation. A test case method may be in zero or
more categories. A JTiger test fixture class must have a constructor that takes no
arguments or a constructor that takes a single String argument.

2.2 What is a Test Case?

A JTiger test case method is potentially any method that is present in a test
fixture class. A JTiger test case method must take no arguments. If a method is
specified as a test case method and it takes one or more arguments, execution
of that test case will have a 'Ignored (Cannot Invoke)' test case result. You can
specify a method as a test case method by using the default TestDefinition
implementation, where the method is annotated with the
org.jtiger.framework.Test annotation. A test case method that has been written
using the JUnit test framework can be executed by using the JUnit TestDefinition
implementation, which specifies a test case method as any method that has a
name beginning with "test". A test case method may have a return value. If the
test case method has a return value that is not null and the method doesn't throw

JTiger 2.1 User Documentation

- 6 -

http://www.junit.org/

an exception during test case execution, the return value is used as the test case
result message. If an exception is thrown during test case execution, the
exception message is used as the test case result message.

The execution of a JTiger test case method can result in one of six states:

1.
Success

The test case method executed successfully without an exception, or, if an
exception was expected, the exception occurred. A test case method can
specify that it is expecting an exception to occur by using the
org.jtiger.framework.ExpectException annotation.

2.
Ignored (Annotated)

The test case method was not executed because it is annotated with
org.jtiger.framework.Ignore.

3.
Ignored (Cannot Invoke)

The test case method was not executed because it does not meet the
requirements for a test case method. Specifically, it takes one or more
arguments. It is a requirement that a JTiger test case method takes zero
arguments.

4.
Failure (Set Up)

The test case method was not executed because it could not be set up
correctly. A set up method in the test fixture threw an exception when it was
executed.

5.
Failure

The test case method was executed and resulted in failure. A test case
method results in failure if an exception occurs during execution that it wasn't
expecting. A test case method can specify that it is expecting an exception
to occur by using the org.jtiger.framework.ExpectException annotation. If the
expected exception occurs, the test case result is 'Success'.

6.
Failure (Tear Down)

JTiger 2.1 User Documentation

- 7 -

The test case method was executed, however, it could not be torn down
correctly. A tear down method in the test fixture threw an exception when it
was executed.

A JTiger test case result is resolved using these rules, in the following order:

1.
If the test case method is annotated with org.jtiger.framework.Ignore, the test
case result is 'Ignored (Annotated)'.

2.
If the test case method takes one or more arguments, the test case result is
'Ignored (Cannot Invoke)'.

3.
If an exception occurs during execution of any of the set up methods in the
test fixture, the test case result is 'Failure (Set Up)'.

4.
If an exception occurs during execution of any of the tear down methods in
the test fixture, which occurs after test case method execution, the test case
result is 'Failure (Tear Down)'.

5.
If an exception occurs during execution of the test case method and that
exception type was not expected, the test case result is 'Failure'.

6.
If an exception occurs during execution of the test case method and that
exception type was expected, the test case result is 'Success'.

7.
If an exception does not occur during execution of the test case method and
an exception was expected, the test case result is 'Failure'.

8.
If an exception does not occur during execution of the test case method and
an exception was not expected, the test case result is 'Success'.

Following is a test fixture that contains five (5) test cases. After execution of
these test cases, each has a result of 'Success'. Note that the assertion methods
(those whose name begins with "assert") may throw a
org.jtiger.assertion.AssertionException, however, they never do because all of
the assertions that are made, hold true.

JTiger 2.1 User Documentation

- 8 -

package org.jtiger.samples;

import org.jtiger.framework.Test;
import org.jtiger.framework.ExpectException;
import org.jtiger.assertion.ObjectFactory;
import static org.jtiger.assertion.Basic.assertEqual;
import static org.jtiger.assertion.Serialization.assertSerializes;
import static org.jtiger.assertion.Serialization.assertSerializesEqual;
import static
org.jtiger.assertion.ObjectFactoryContract.assertObjectFactoryFillsContract;
import static
org.jtiger.assertion.EqualsMethodContract.assertEqualsMethodFillsContract;
import static
org.jtiger.assertion.HashCodeMethodContract.assertHashCodeMethodFillsContract;

public final class SomeTestCases
{

public SomeTestCases()
{

}

@Test
public void simpleTestCase1()
{

// Assert that two plus two equals four.
assertEqual(4, 2 + 2);

}

@Test
public void simpleTestCase2()
{

// Assert that an instance of the Integer
// class serializes and deserializes.
assertSerializes(new Integer(7));

}

@Test
public void simpleTestCase3()
{

// Assert that an instance of the Integer
// class serializes and deserializes to be equal.
assertSerializesEqual(new Integer(7));

}

@Test
public void simpleTestCase4()
{

// Assert that the Integer class meets the Object equals
// and hashCode method contracts.
// This test is only as good as the test data returned by
// the ObjectFactory methods.
final ObjectFactory<Integer> factory = new

ObjectFactory<Integer>()
{

public Integer newInstanceX()
{

return new Integer(7);
}

public Integer newInstanceY()
{

return new Integer(8);
}

JTiger 2.1 User Documentation

- 9 -

};

// Assert that the test data is valid and meets
// the ObjectFactory contract.
assertObjectFactoryFillsContract(factory);
// Assert that the Object equals method contract is met.
assertEqualsMethodFillsContract(factory);
// Assert that the Object hashCode method contract is met.
assertHashCodeMethodFillsContract(factory);

}

@Test
@ExpectException(NullPointerException.class)
public void simpleTestCase5()
{

// Expect a NullPointerException to occur.
new String((StringBuffer)null);

}
}

2.3 Best Practices

•
Use the org.jtiger.framework.Fixture annotation on test fixtures. Although it is
not required, this annotation provides documentation that is used in test
reports, and for readers of the test source code.

•
Use the appropriate assertions. For example, when testing for equality, use
org.jtiger.assertion.Basic.assertEqual.

package org.jtiger.samples;

import org.jtiger.framework.Test;
import static org.jtiger.assertion.Basic.assertEqual;
import static org.jtiger.assertion.Basic.assertTrue;

public final class PreferredAssertionTestFixture
{

@Test
public void preferredTestCase()
{

// assert that two plus two equals four.
// preferred.
assertEqual(4, 2 + 2);

}

@Test
public void notPreferredTestCase()
{

// assert that two plus two equals four.
// not preferred.
assertTrue(2 + 2 == 4);

}
}

JTiger 2.1 User Documentation

- 10 -

The appropriate assertion for the task is a more formal specification of the
software requirements. It is also less prone to error.

•
Categorize test cases using the org.jtiger.framework.Category annotation.
This annotation can be placed on test fixture classes or test case methods. If
test cases belong to a category, a subset of them can be executed by
passing the appropriate regular expression at test execution time.

•
Use the org.jtiger.framework.Ignore annotation during test case development
instead of commenting out test cases. This means that you will be provided
with a test result of 'Ignored (Annotated)' instead of silently ignoring what
should have been a test case, in the circumstance that you forget to
uncomment it.

•
Use a static import for the methods in the assertions package. This results in
test cases that are clear and easy to read.

•
Some assertions require an instance of ObjectFactory
(org.jtiger.assertion.ObjectFactory) as a parameter. The ObjectFactory
interface demands that implementations meets certain aspects of a contract,
which are specified in the ObjectFactory Javadoc API documentation. Before
using an instance of ObjectFactory for making an assertion, assert that your
ObjectFactory implementation meets the contract. This can be achieved with
a call to the
org.jtiger.assertion.ObjectFactoryContract.assertObjectFactoryFillsContract
method. This means that any assertions that are made on the ObjectFactory
instance can be considered genuine, as opposed to being incorrect because
of faulty test data that is returned by the ObjectFactory implementation.

3. Executing Test Fixtures

3.1 Executing Test Fixtures Using the API

Test fixtures can be executed using the JTiger API. The
org.jtiger.framework.FixturesRunnerFactory class is considered the core of the
framework returning instances of org.jtiger.framework.FixturesRunner. Using one
of these instances, you can run a given configuration
(org.jtiger.framework.FixturesRunnerConfig) and have a test result
(org.jtiger.framework.FixtureResults) returned.

JTiger 2.1 User Documentation

- 11 -

http://java.sun.com/j2se/1.5.0/docs/guide/language/static-import.html

Following is a class that contains a main method and is also a test fixture that is
executed by the fixtures runner. It is strongly recommended that the JTiger
Javadoc be used as a reference when developing with the JTiger API.

package org.jtiger.samples;

import static
org.jtiger.framework.FixturesRunnerConfigFactory.newFixturesRunnerConfig;
import static
org.jtiger.framework.FixturesRunnerFactory.newFixturesRunner;
import static org.jtiger.framework.SequenceFactory.newSequence;
import static org.jtiger.assertion.Basic.assertTrue;
import static org.jtiger.assertion.Basic.assertFalse;
import org.jtiger.framework.FixturesRunnerConfig;
import org.jtiger.framework.Test;
import org.jtiger.framework.Category;
import org.jtiger.framework.FixtureResults;
import org.jtiger.framework.FixturesRunner;
import org.jtiger.framework.RunnerException;
import org.jtiger.framework.FixtureResult;
import org.jtiger.framework.TestResult;

public final class ExampleAPIUsage
{

public ExampleAPIUsage()
{

}

// The class that uses the JTiger API is the same
// class that is used as a test fixture.
// This is not ideal - typically, the test run would
// include classes from some other source.
@Test
@Category("samples")
public String testCase()
{

assertTrue(true);
assertFalse(false);
return "true is true and false is false";

}

public static void main(String... args) throws RunnerException
{

Class<?>[] fixtureClasses = new
Class<?>[]{ExampleAPIUsage.class};

FixturesRunnerConfig config =
newFixturesRunnerConfig(newSequence(fixtureClasses),

null, null, false, "samples");
FixturesRunner runner = newFixturesRunner();
FixtureResults results = runner.run(config);

for(FixtureResult result : results)
{

for(TestResult tr : result)
{

System.out.println(tr.getTestResultType() + " : " +
tr.getMessage());

}
}

}

JTiger 2.1 User Documentation

- 12 -

}

3.2 Executing Test Fixtures From the Command Line

Test fixtures can be executed from the command line by passing the
configuration information using command line arguments. The JTiger Javadoc for
the org.jtiger.framework.FixturesRunnerMain class provides valuable information
for execution from the command line. The JTiger JAR file can be executed using
the -jar switch, however, remember that any classpath setting (CLASSPATH
environment variable or -classpath command line switch) is ignored by the JVM
system class loader when this switch is used. Two example commands follow:

java -jar jtiger.jar -fixtureClasses org.jtiger.ant.TestCategory
org.jtiger.samples.ExampleAPIUsage -categories samples

java -classpath jtiger.jar org.jtiger.framework.FixturesRunnerMain
-fixtureClasses org.jtiger.ant.TestCategory

org.jtiger.samples.ExampleAPIUsage -categories samples -result ~html
-resultParams reports

If a command line argument is malformed or no command line arguments are
given, usage information will be sent to the standard error stream. All command
line arguments are optional. It is recommended that the -fixtureClasses
command line argument always be used. The available command line arguments
correspond to the attributes of an instance of
org.jtiger.framework.FixturesRunnerConfig with the addition of an implementation
of org.jtiger.framework.FixtureResultsHandler to handle the results of the test
fixture execution. The available command line arguments and their meanings
follow:

•
-fixtureClasses

This command line argument is followed by one or more test fixture class
names whose test case methods are executed during the test run.

•
-definitionClass

This command line argument is followed by the class name to use that
defines a test case method. This class must implement the
org.jtiger.framework.TestDefinition interface, otherwise, the default Test

JTiger 2.1 User Documentation

- 13 -

Definition implementation is used. By default, a test case method is defined
as one that is annotated with org.jtiger.framework.Test.

•
-sutdClass

This command line argument is followed by the class name to use to
perform test case set up and tear down. This class must implement the
org.jtiger.framework.SetUpTearDown interface, otherwise, the default Set
Up Tear Down implementation is used. By default, test case set up occurs
by executing all methods that are annotated with org.jtiger.framework.SetUp
and test case tear down occurs by executing all methods that are annotated
with org.jtiger.framework.TearDown.

•
-haltOnFailure

This command line argument is used to specify whether test execution
should halt if a test failure is encountered. The default value is "false".

•
-junit

This command line argument is used as a shortcut for specifying that the
included test fixtures have been written using the JUnit test framework. If this
command line argument is specified, the values of the -definitionClass and
-sutdClass command line arguments are ignored, since they are implicitly
set to values representing the implementation classes that are used for JUnit
test case execution.

•
-categories

This command line argument is followed by one or more regular expressions
of categories of test cases that are to be executed. A test case is put into
one or more categories by annotating the test case method or the containing
test fixture with org.jtiger.framework.Category. By default, all test cases are
executed if no categories are specified, including those that do not explicitly
specify a category.

•
-result

This command line argument is followed by the class name that handles the
test fixture results. There are four special, case-insensitive values that may
be used; "~html", "~xml", "~text" or "~failure" for the name attribute to use
the Fixture Results Handler implementations that are included with JTiger.
This class must implement the org.jtiger.framework.FixtureResultsHandler

JTiger 2.1 User Documentation

- 14 -

http://www.junit.org/

interface or be one of the four special values, otherwise, the default Fixture
Results Handler implementation is used. By default, fixture results are
summarized and sent to the standard output stream.

•
-resultParams

This command line argument is followed by one or more parameters that are
passed to the fixture results handler implementation. If the -result command
line argument is not used, this command line argument is ignored, since the
default Fixture Results Handler implementation does not use any
parameters that are passed. Some JTiger Fixture Results Handler
implementations output a HTML, XML, or plain text report to a file or
directory. The file or directory name is passed as a parameter to the JTiger
Fixture Results Handler implementation.

3.3 Executing Test Fixtures From the Apache Ant Task

Test fixtures can be executed from the JTiger Apache Ant task, which is
represented by the org.jtiger.ant.JTigerTask class. The Javadoc for this class
provides valuable information regarding the attributes and elements of the task.
The attributes and elements of this task correspond to the attributes of an
instance of org.jtiger.framework.FixturesRunnerConfig with the addition of an
implementation of org.jtiger.framework.FixtureResultsHandler to handle the
results of the test fixture execution and an element for providing the environment
of the Java Virtual Machine that is used.

The following example is an excerpt from the Apache Ant build file that is used to
execute the JTiger Self Test Fixtures:

<taskdef name="jtiger" classname="org.jtiger.ant.JTigerTask"
classpathref="project.class.path"/>
<jtiger haltonfailure="false">

<category regex="org\.jtiger\..*"/>
<fixtures>

<fileset dir="test-src">
<include name="**/**.java"/>

</fileset>
</fixtures>
<result name="~html">

<param value="report/test-report"/>
</result>
<java failonerror="true">

<classpath refid="project.class.path"/>
</java>

</jtiger>

JTiger 2.1 User Documentation

- 15 -

3.4 The Set Up Tear Down implementations

Set Up Tear Down implementations are represented by the
org.jtiger.framework.SetUpTearDown interface. JTiger includes two
implementations of this interface; the default implementation and the
implementation that is used for executing test cases that have been written using
the JUnit test framework. It is possible to write a custom implementation to use
for test execution that is invoked at the time of test case set up and test case tear
down.

The Set Up Tear Down implementation class is returned from the getSutdClass
method of the org.jtiger.framework.FixturesRunnerConfig class, or null is
returned to use the default Set Up Tear Down implementation. A custom
implementation class must have a constructor that takes no arguments or a
constructor that takes a single String argument.

The default Set Up Tear Down implementation class is represented by the
org.jtiger.framework.DefaultSetUpTearDown class. This class performs test case
set up by invoking any methods that are annotated with
org.jtiger.framework.SetUp and performs test case tear down by invoking any
methods that are annotated with org.jtiger.framework.TearDown. If there are two
or more methods that are annotated with @SetUp, or two or more methods that
are annotated with @TearDown, it is not guaranteed which order the methods
will be executed during test case set up or test case tear down.

The JUnit Set Up Tear Down implementation class is represented by the
org.jtiger.framework.junit.JUnitSetUpTearDown class. This class performs test
case set up by invoking the first method in the superclass hierarchy that is called
"setUp" and takes no arguments, and performs test case tear down by invoking
the first method in the superclass hierarchy that is called "tearDown" and takes
no arguments.

3.5 The Test Definition implementations

Test Definition implementations are represented by the
org.jtiger.framework.TestDefinition interface. JTiger includes two
implementations of this interface; the default implementation and the
implementation that is used for executing test cases that have been written using
the JUnit test framework. It is possible to write a custom implementation to use
for test execution that is invoked to determine how a method is defined as a test
case.

JTiger 2.1 User Documentation

- 16 -

http://www.junit.org/
http://www.junit.org/
http://www.junit.org/

The Test Definition implementation class is returned from the getDefinitionClass
method of the org.jtiger.framework.FixturesRunnerConfig class, or null is
returned to use the default Test Definition implementation. A custom
implementation class must have a constructor that takes no arguments or a
constructor that takes a single String argument.

The default Test Definition implementation class is represented by the
org.jtiger.framework.DefaultTestDefinition class. This class defines a test case as
any method that is annotated with org.jtiger.framework.Test.

The JUnit Test Definition implementation class is represented by the
org.jtiger.framework.junit.JUnitTestDefinition class. This class defines a test case
as any method that has a name beginning with "test".

3.6 The Fixture Results Handler implementations

Fixture Results Handler implementations are represented by the
org.jtiger.framework.FixtureResultsHandler interface. JTiger includes four
implementations of this interface; the default implementation, the HTML report
implementation, the XML report implementation and the plain text report
implementation.

The default Fixture Results Handler implementation class is represented by the
org.jtiger.framework.DefaultFixtureResultsHandler class. This class handles test
case results by sending a summary of the results to the standard output stream.
For example, "Success: [672] Failure: [0] Ignored: [0]". A custom implementation
class must have a constructor that takes no arguments or a constructor that
takes a single String argument.

The HTML report Fixture Results Handler implementation class is represented by
the org.jtiger.report.html.HtmlFixtureResultsHandler class. This class handles
test case results by creating a HTML report in the directory that is passed as a
parameter to the Fixture Results Handler. If no parameter is passed the current
directory is used. The HTML files contain detailed test case result information in
HTML format. The report index is a file called 'index.html'.

The XML report Fixture Results Handler implementation class is represented by
the org.jtiger.report.xml.XmlFixtureResultsHandler class. This class handles test
case results by producing an XML report file. The name of the file is passed as a
parameter to the Fixture Results Handler. If no parameter is passed a file called
'result.xml' in the current directory is used. The XML file contains detailed test

JTiger 2.1 User Documentation

- 17 -

http://www.junit.org/

case result information in XML format.

The plain text report Fixture Results Handler implementation class is represented
by the org.jtiger.report.text.TextFixtureResultsHandler class. This class handles
test case results by writing a plain text file. The name of the file is passed as a
parameter to the Fixture Results Handler. If no parameter is passed a file called
'result.txt' in the current directory is used. The text file contains detailed test case
result information in plain text format.

3.7 Halting Test Execution When a Failure Occurs

If a failure occurs during test execution, any pending test cases can be halted
from execution and a result returned immediately. By default, test execution is
not halted when a failure is encountered. A failure is defined as any one of the
failure test case results; 'Failure', 'Failure (Set Up)', or 'Failure (Tear Down)'.

The halt on failure boolean value is returned from the isHaltOnFailure method of
the org.jtiger.framework.FixturesRunnerConfig class.

3.8 Test Case Categories

Test cases belong to a category by annotating the test case method with
org.junit.framework.Category or the test fixture class that contains it. A test case
method is said to be in all of the categories that form the union where the
@Category annotation appears on the test case method, and its test fixture.

package org.jtiger.samples;

import org.jtiger.framework.Category;
import org.jtiger.framework.Test;

@Category({"a", "b"})
public final class ExampleCategory
{

@Test
@Category("c")
public void m1()
{

}

@Test
public void m2()
{

}

JTiger 2.1 User Documentation

- 18 -

@Test
@Category({"c", "d"})
public void m3()
{

}
}

In the above example, the method 'm1' is in the categories 'a', 'b' and 'c'. The
method 'm2' is in the categories 'a' and 'b'. The method 'm3' is in the categories
'a', 'b', 'c' and 'd'.

Categories are specified at test execution time as regular expressions. If no
categories are specified, all test case methods that are in any category will be
executed. Test case methods that are in no category can be executed only by
not specifying any category regular expressions. It is important to remember that
regular expressions have characters that are not used as their literal meaning.

In the above example, given the regular expression, "[cdef]" as a category for
execution, the methods 'm1' and 'm2' will be included because they are the only
two methods that are in a category that matches the regular expression.

4. Making Assertions in Test Cases

JTiger includes a rich API for making assertions in your test cases. Assertions
range from the very basic, "assert true", to the complex, "assert the Object
equals method contract". The JTiger assertions API is represented by the
org.jtiger.assertion package. It is strongly recommended that you consult the
JTiger Javadoc API documentation when using the JTiger assertions.

Assertions typically require some argument on which to make the assertion. For
example, the "assert true" (org.jtiger.assertion.Basic.assertTrue) assertion takes
a single boolean argument. If this argument is not true, the test case fails by
throwing a org.jtiger.assertion.AssertionException. It is not recommended to use
an AssertionException in an @ExpectException annotation or to use a
java.lang.RuntimeException, java.lang.Exception or java.lang.Throwable with
subclasses set to the value true if it possible that your test case may throw an
AssertionException i.e. you use any of the JTiger assertions.

All JTiger assertions take a variable argument list of type java.lang.Object. Any
arguments passed have their toString method called and appended in sequence
to form a single test case message. This message is used in test reports and is

JTiger 2.1 User Documentation

- 19 -

http://java.sun.com/j2se/1.5.0/docs/guide/language/varargs.html

available from the API when a test result is returned and in JTiger test reports.

assertTrue(true);
assertEqual(new Integer(7), new Integer(7), "the Integer 7 is not equal
to the Integer 7");
assertNull(null, "null", " is not null");
assertSerializes(new Float(7.6F), new StringBuilder()

.append("The Float with the value")

.append(7.6F).append("did not serialize"));

5. The Apache Ant Task

JTiger includes an Apache Ant task for starting a test execution from an Apache
Ant build file. The JTiger Apache Ant task is represented by the
org.jtiger.ant.JTigerTask class. The task allows the following elements and
attributes:

•
<fixtures> element

This element may contain zero or more a fixture subelements or zero or
more fileset subelements. This element is used to specify the names of the
test fixtures to execute. Files that are matched by fileset subelements are
converted to a class name by removing the .java or .class file extension and
changing the directory separators to dots. If a file name does not have the
.java or .class suffix, it is ignored. For example, the file name
"org/jtiger/MyClass.class" would be converted to the class name
"org.jtiger.MyClass". The fixture subelement accepts a single attribute called
classname.

•
definitionClass attribute

This attribute is used to specify the class name to use as the Test Definition
implementation during test execution. If this attribute is not present, the
default Test Definition implementation is used.

•
sutdClass attribute

This attribute is used to specify the class name to use as the Set Up Tear
Down implementation during test execution. If this attribute is not present,
the default Set Up Tear Down implementation is used.

•
<category> element

JTiger 2.1 User Documentation

- 20 -

http://ant.apache.org/
http://ant.apache.org//manual/CoreTypes/fileset.html
http://ant.apache.org//manual/CoreTypes/fileset.html

This element may appear zero or more times to specify the test category
regular expressions to use during test execution. If no category elements are
present, all test cases are executed. This element accepts a single attribute
called regex.

•
haltOnFailure attribute

This attribute is used to specify whether test execution should halt if a test
failure is encountered. The default value is "false". This attribute can be set
to true by giving it a value of "true", "yes" or "on".

•
JUnit attribute

This attribute is used as a shortcut for specifying that the included test
fixtures have been written using the JUnit test framework. If this attribute has
a value of "true", "yes" or "on", the values of the definitionClass and
sutdClass attributes are ignored, since they are implicitly set to values
representing the implementation classes that are used for JUnit test case
execution.

•
<result> element

This element specifies the class name of the Fixture Results Handler to use
for test execution. There are four special, case-insensitive values that may
be used; "~html", "~xml", "~text" or "~failure" for the name attribute to use
the Fixture Results Handler implementations that are included with JTiger.
These values are case-insensitive, and each of them requires at least one
parameter, which is the name of the file or directory to write the test results
report to. A Fixture Results Handler parameter is passed using the param
subelement. The param subelement accept a single attribute called value.

•
<java> element

This element specifies the Java Virtual Machine environment that is used for
test execution. The Java Virtual Machine is a forked process from the Java
Virtual Machine that the Ant task is running in to provide an independant
execution environment. This element provides most, but not all, of the same
subelements and attributes as the core Ant <java> task.

Following are some example excerpts from an Apache Ant build file.

JTiger 2.1 User Documentation

- 21 -

http://www.junit.org/
http://ant.apache.org//manual/CoreTasks/java.html

•
<taskdef name="jtiger" classname="org.jtiger.ant.JTigerTask"
classpathref="project.class.path"/>
<jtiger junit="true">

<fixtures>
<fileset dir="test-src">

<include name="**/**.java"/>
</fileset>

</fixtures>
<java failonerror="true">

<classpath refid="project.class.path"/>
</java>

</jtiger>

•
<taskdef name="jtiger" classname="org.jtiger.ant.JTigerTask"
classpathref="project.class.path"/>
<jtiger haltonfailure="true" sutdClass="com.foo.MySetUpTearDown"
definitionClass="com.foo.MyTestDefinition">

<category regex="Database test cases"/>
<fixtures>

<fixture classname="com.foo.MyTestFixture"/>
<fixture classname="com.foo.MyOtherTestFixture"/>
<fileset dir="test-src">

<include name="**/**.java"/>
</fileset>

</fixtures>
<result name="com.foo.MyFixtureResultsHandler">

<param value="a value"/>
</result>
<java failonerror="true">

<classpath refid="project.class.path"/>
</java>

</jtiger>

•
<taskdef name="jtiger" classname="org.jtiger.ant.JTigerTask"
classpathref="project.class.path"/>
<jtiger haltonfailure="true">

<category regex="[Aa].*"/>
<category regex="[Bb].*"/>
<category regex="[Cc].*"/>
<category regex="[Cc].*"/>
<category regex=".*[Dd]atabase.*"/>
<fixtures>

<fileset dir="test-src">
<include name="**/**.class"/>

</fileset>
</fixtures>
<java failonerror="true">

<classpath refid="project.class.path"/>
</java>

</jtiger>

6. Executing JUnit Test Cases

JTiger 2.1 User Documentation

- 22 -

The JTiger framework provides the ability to execute test cases that have been
written using the JUnit test framework. JUnit test cases typically inherit from the
junit.framework.TestCase class, which is included with the JUnit test framework
software. Although it is not mandatory for a class to inherit from
junit.framework.TestCase for JTiger to execute it as a JUnit test case, it is
mandatory that the class have setUp and tearDown methods that take no
arguments. The class may have these methods through inheritance. That is, if a
class inherits from junit.framework.TestCase (which declares the setUp and
tearDown methods), it is not necessary to override them since it has setUp and
tearDown methods through inheritance. If the setUp method does not exist when
a class is executed by JTiger as a JUnit test case, all test cases in the test fixture
will fail with a result of 'Failure (Set Up)'. If the tearDown method does not exist
when a class is executed by JTiger as a JUnit test case, all test cases in the test
fixture will fail with a result of 'Failure (Tear Down)'.

The JTiger framework provides the ability to execute JUnit test cases by
providing two classes; org.jtiger.framework.junit.JUnitTestDefinition and
org.jtiger.framework.junit.JUnitSetUpTearDown. The JUnitTestDefinition class
must be used as the TestDefinition implementation and the
JUnitSetUpTearDown class must be used a the SetUpTearDown implementation
during test execution. The JTiger Apache Ant Task provides a shortcut for
specfying these two classes by setting the "JUnit" attribute value to true.

7. Annotation Reference

7.1 Overview

This section provides a reference for the annotation types that are included with
JTiger. It is strongly recommended to use the JTiger Javadoc API Documentation
alongside this reference during unit test development. All JTiger annotation types
exist in the org.jtiger.framework package.

7.2 Category

This annotation is used on test case methods or test fixture classes to specify
one or more categories that test cases are in. If the annotation appears on a test
fixture class, all test case methods in that fixture are in the categories specified
as well as the categories that might be specified on each test case method itself.

@Category("Category1")
@Category(value = "Category1")

JTiger 2.1 User Documentation

- 23 -

http://www.junit.org/

@Category({"Category1", "Category2"})

7.3 ExpectException

This annotation is used on test case methods to indicate that an exception (any
java.lang.Throwable or subclass) is expected to occur. If an expected exception
does not occur, the test case results in failure.

@ExpectException(NullPointerException.class)
@ExpectException(value = NullPointerException.class)
@ExpectException(value = RuntimeException.class, subclass = true)

7.4 Fixture

This annotation is used on test fixture classes to document the test fixture with
information that appears in each test case result and JTiger reports. It is not
mandatory for a test fixture class to use this annotation, but it is recommended
since it improves the documentation of your test cases. If a test fixture is not
annotated with @Fixture, the default name is used in the test case result, which
is name of the class.

@Fixture("Fixture Name")
@Fixture(value = "Fixture Name")
@Fixture(value = "Fixture Name", description = "Fixture Description")

7.5 Ignore

This annotation is used on test case methods to indicate that they should be
ignored during test execution. This annotation is useful during test case
development and debugging and it is considered a better practice to use an
Ignore annotation than commenting out a test case. This is because an ignored
test case will have a test case result of 'Ignored (Annotated)', where a
commented test case is silently ignored and is prone to being forgotten.

@Ignore
@Ignore("This test case is ignored because I'm debugging")
@Ignore(value = "This test case is ignored because pizza arrived")

7.6 Repeat

JTiger 2.1 User Documentation

- 24 -

This annotation is used on test case methods to indicate that they should be
repeated a specified number of times. Test case methods will have a distinct test
case result for each time it is repeated. By default, this annotation has a value of
one (1) indicating a single test execution. If a negative value is specified, the
default value (1) is used.

@Repeat(7)
@Repeat(2L)

7.7 SetUp

This annotation is used on test fixture methods to indicate that they should be
executed prior to the execution of each test case method in the same test fixture
class. If a method that has this annotation throws an exception when it is
executed, the test case will result in 'Failure (Set Up)'. Set up methods are
typically used to create test data that is used in test case methods.

@SetUp

7.8 TearDown

This annotation is used on test fixture methods to indicate that they should be
executed after execution of each test case method in the same test fixture class.
If a method that has this annotation throws an exception when it is executed, the
test case will result in 'Failure (Tear Down)'. Tear down methods are typically
used to clean up resources that are used in the test case set up.

@TearDown

7.9 Test

This annotation is used on fixture methods to indicate that they are test case
methods and should be executed when the test fixture is executed. Use of this
annotation implies that the test fixture will be executed using the default Test
Definition implementation. If a test case method is annotated with @Test without
a value attribute (the name of the test case method), the default name is used in
the test case result, which is name of the method.

@Test

JTiger 2.1 User Documentation

- 25 -

@Test("Test Case name")
@Test(value = "Test Case name")
@Test(description = "Test Case description")
@Test(value = "Test Case Name", description = "Test Case description")

8. The Self Test Fixtures

8.1 Overview

The JTiger download package includes source code that is used to assert that
JTiger functions correctly and as specified. This test source code is based on the
JTiger framework itself. JTiger development aims to achieve a certain metric of
code coverage for unit test cases i.e. the test source code must execute a certain
amount of the core JTiger code when the self test fixtures are run. That metric is
100% class and 100% method coverage.

The test source is a valuable resource in that it is a formal and very detailed
specification of the requirements of JTiger. If there is a feature of JTiger that you
are unsure of the exact specification of, even given the documentation for that
feature, the test source code will almost certainly reveal the exact specification
since the test source code utilises that feature (due to 100% method coverage).

8.2 The Test Report

The JTiger download package includes a report of the results of the JTiger test
source code. A 100% success result indicates that JTiger is functioning correctly
and meets all requirements, assuming that there are no defects in the
requirements (the test source code). The test report is in HTML format and is
generated by the class org.jtiger.report.html.HtmlFixtureResultsHandler. You can
generate a report in the same format using this class as the configured Fixture
Results Handler implementation class when you execute your test cases.

8.3 The Code Coverage Report

The JTiger download package includes a report of the amount of code that is
covered during execution of the test source code. The report is generated by a
code coverage tool called EMMA. The report indicates 100% class and 100%
method coverage, which is an objective of the development of the JTiger
software. This metric is intended to imply that JTiger is a robust and reliable unit
test framework that can be used in any software production environment.

JTiger 2.1 User Documentation

- 26 -

http://emma.sourceforge.net/

9. Example Scenario

9.1 Overview

This section provides an example scenario of using JTiger. The code under test
in the example will be core J2SE classes. Since it is expected that a Java
Runtime Environment includes core classes that meet all requirements, it is also
expected that these test cases will succeed (have a test case result of 'Success').
The examples demonstrate a method of organization and documentation of test
fixture classes. If you choose to adopt this method, it is merely consequential i.e.
JTiger makes no recommendations about the organization of your test fixture
classes.

9.2 Some Simple Test Fixtures

The following two test fixtures make assertions regarding the java.lang.Integer
and java.lang.Thread class respectively.

•
package org.jtiger.samples;

import static org.jtiger.assertion.Basic.assertEqual;
import static org.jtiger.assertion.Basic.assertTrue;
import org.jtiger.framework.Fixture;
import org.jtiger.framework.Category;
import org.jtiger.framework.Test;

@Fixture(value = "Thread", description = "Performs Unit Tests on
java.lang.Thread")
@Category({"java.lang.Thread", "J2SE Core", "java.lang"})
public final class SampleTestFixture1
{

public SampleTestFixture1()
{

}

@Test(value = "Constant fields", description = "Test the
constant fields of java.lang.Thread")

public void constantFields()
{

assertEqual(1, Thread.MIN_PRIORITY);
assertEqual(5, Thread.NORM_PRIORITY);
assertEqual(10, Thread.MAX_PRIORITY);

}

@Test(value = "Runnable", description = "Test the Runnable
implementation passed to java.lang.Thread")

public void runnable() throws InterruptedException
{

final MockRunnable r = new MockRunnable();

JTiger 2.1 User Documentation

- 27 -

final Thread t = new Thread(r);
t.start();
t.join();
assertTrue(r.isRun());

}

private static final class MockRunnable implements Runnable
{

private boolean run;

public void run()
{

run = true;
}

public boolean isRun()
{

return run;
}

}
}

•
package org.jtiger.samples;

import static org.jtiger.assertion.Basic.assertEqual;
import static org.jtiger.assertion.Basic.assertSame;
import static org.jtiger.assertion.Serialization.assertSerializes;
import static
org.jtiger.assertion.Serialization.assertSerializesEqual;
import static
org.jtiger.assertion.Comparable.assertEqualComparesToZero;
import static
org.jtiger.assertion.ObjectFactoryContract.assertObjectFactoryFillsContract;
import static
org.jtiger.assertion.EqualsMethodContract.assertEqualsMethodFillsContract;
import static
org.jtiger.assertion.HashCodeMethodContract.assertHashCodeMethodFillsContract;
import org.jtiger.framework.Fixture;
import org.jtiger.framework.Category;
import org.jtiger.framework.Test;
import org.jtiger.framework.ExpectException;
import org.jtiger.assertion.ObjectFactory;

@Fixture(value = "Integer", description = "Performs Unit Tests on
java.lang.Integer")
@Category({"java.lang.Integer", "J2SE Core", "java.lang"})
public final class SampleTestFixture2
{

public SampleTestFixture2()
{

}

@Test(value = "Constant fields", description = "Test the
constant fields of java.lang.Integer")

public void constantFields()
{

assertEqual(2147483647, Integer.MAX_VALUE);
assertEqual(-2147483648, Integer.MIN_VALUE);
assertEqual(32, Integer.SIZE);
assertSame(int.class, Integer.TYPE);

}

JTiger 2.1 User Documentation

- 28 -

@Test(value = "Constructors (1)", description = "Test the
constructors of java.lang.Integer")

public void constructors1()
{

new Integer(7);
new Integer("7");
final Integer i1 = new Integer(7);
assertEqual(7, i1.intValue());

final Integer i2 = new Integer("8");
assertEqual(8, i2.intValue());

}

@Test(value = "Constructors (2)", description = "Test the
constructors of java.lang.Integer")

@ExpectException(NumberFormatException.class)
public void constructors2()
{

new Integer("xyz");
}

@Test(value = "Rotate", description = "Test the rotating method
of java.lang.Integer")

public void rotate()
{

final Integer i = 7;
assertEqual(7340032, Integer.rotateRight(i, 12));
assertEqual(28672, Integer.rotateLeft(i, 12));

}

@Test(value = "Serialization", description = "Test the
serialization of java.lang.Integer")

public void serialization()
{

final Integer i = 7;
assertSerializes(i, "Integer does not serialize");
assertSerializesEqual(i, "Integer does not serialize

equal");
}

@Test(value = "Comparable", description = "Test the comparable
implementation of java.lang.Integer")

public void comparable()
{

final ObjectFactory<Integer> factory = new
ObjectFactory<Integer>()

{
public Integer newInstanceX()
{

// WARNING!
// Values between -128 and 127 will not work
// here since they are boxed to the same
// instance of Integer.
// This violates the ObjectFactory contract.
// This method must return unique instances on each

invocation.
return 777;

}

public Integer newInstanceY()
{

return 888;
}

JTiger 2.1 User Documentation

- 29 -

};

assertObjectFactoryFillsContract(factory);
assertEqualComparesToZero(factory, "equal Integers do not

compare to zero");
}

@Test(value = "Equals/HashCode", description =
"Test the equals and hashCode method contract

implementations of java.lang.Integer")
public void equalsHashCodeContracts()
{

final ObjectFactory<Integer> factory = new
ObjectFactory<Integer>()

{
public Integer newInstanceX()
{

return 777;
}

public Integer newInstanceY()
{

return 888;
}

};

assertObjectFactoryFillsContract(factory);
assertEqualsMethodFillsContract(factory);
assertHashCodeMethodFillsContract(factory);

}
}

9.3 Executing the Test Fixtures From the Command Line

The following command line execution statement is intended to be used on a
UNIX platform, since it uses a colon (:) as the path separator. If you are using a
Microsoft Windows platform, substitute the colon with a semi-colon (;). The
statement executes only test cases that are in the "java.lang" category. All of the
test cases in the sample test fixtures are in this category, so it has no effect. If
these test fixtures were accompanied by other test fixtures whose test cases
were in other categories, this categorization would allow only a subset of test
case methods to be executed during test execution. Note that the dot (.) is
escaped with a backslash (\) since it has a special meaning in a regular
expression and it is the literal meaning that is intended.

java -classpath tests:jtiger.jar org.jtiger.framework.FixturesRunnerMain
-fixtureClasses org.jtiger.samples.SampleTestFixture1

org.jtiger.samples.SampleTestFixture2 -categories "java\.lang"

9.4 Executing the Test Fixtures From the Apache Ant Task

JTiger 2.1 User Documentation

- 30 -

The following is an Apache Ant task excerpt that executes the sample test
fixtures using the JTiger Apache Ant Task:

<taskdef name="jtiger" classname="org.jtiger.ant.JTigerTask"
classpathref="project.class.path"/>
<jtiger haltonfailure="true">

<category regex="java\.lang"/>
<fixture classname="org.jtiger.samples.SampleTestFixture1"/>
<fixture classname="org.jtiger.samples.SampleTestFixture2"/>
<java failonerror="true"/>

</jtiger>

9.5 Executing the Test Fixtures Using the API

The following is a code sample that runs the sample test fixtures and outputs a
HTML test report of the test case results in a subdirectory of the user home
directory using the JTiger API.

package org.jtiger.samples;

import static
org.jtiger.framework.FixturesRunnerConfigFactory.newFixturesRunnerConfig;
import static org.jtiger.framework.SequenceFactory.newSequence;
import static
org.jtiger.framework.FixturesRunnerFactory.newFixturesRunner;
import org.jtiger.framework.FixturesRunnerConfig;
import org.jtiger.framework.FixturesRunner;
import org.jtiger.framework.FixtureResults;
import org.jtiger.framework.RunnerException;
import org.jtiger.framework.FixtureResultsHandler;
import org.jtiger.framework.FixtureResultsHandlerException;
import org.jtiger.report.html.HtmlFixtureResultsHandler;
import java.io.File;

public final class SampleTestFixtureAPI
{

private SampleTestFixtureAPI()
{

}

public static void main(final String... args) throws
RunnerException, FixtureResultsHandlerException

{
final Class<?>[] fixtureClasses = new

Class<?>[]{SampleTestFixture1.class,
SampleTestFixture2.class};

final FixturesRunnerConfig config =
newFixturesRunnerConfig(newSequence(fixtureClasses),

null, null, false, "java.lang");
final FixturesRunner runner = newFixturesRunner();
final FixtureResults results = runner.run(config);

final FixtureResultsHandler handler = new
HtmlFixtureResultsHandler();

JTiger 2.1 User Documentation

- 31 -

http://ant.apache.org/

final String dir = System.getProperty("user.home") +
"/.jtiger-sample-report";

new File(dir).mkdirs();
handler.handleResult(results, newSequence(new String[]{dir}));

}
}

10. JTiger User Community

10.1 IRC (JTiger live chat)

JTiger has an active IRC channel on the freenode network called #jtiger. Most
IRC clients will connect to the freenode network and join the JTiger channel by
executing the following IRC client command:

/server irc.freenode.net -j #JTiger

Most IRC clients also allow you to connect by following a URL. The URL for the
JTiger IRC channel is irc://irc.freenode.net/JTiger. To get started with IRC on a
Microsoft Windows platform, download and install mIRC and follow the JTiger
IRC channel URL. If you are on a Linux platform, download and install xchat.

11. Future Direction for JTiger

JTiger future development is being investigated. Some of the features and topics
that are under review include the development of a swing GUI interface from
which to execute unit test cases, the development of IDE (Integrated
Development Environment) plugins for Eclipse, and Intellij IDEA, and the
possibility of a mock objects package that mocks J2SE and J2EE core classes.

Join the JTiger IRC channel and have your say! Make a suggestion, share your
ideas or just hang out.

Appendix A. Executing JTiger unit test cases using an
Integrated Development Environment

JTiger currently does not include any IDE integration. However, this does mean
that you cannot execute JTiger unit test cases while using the features of your

JTiger 2.1 User Documentation

- 32 -

http://www.irchelp.org/
http://freenode.net/
irc://irc.freenode.net/JTiger
http://www.mirc.com/
irc://irc.freenode.net/JTiger
irc://irc.freenode.net/JTiger
http://www.xchat.org/
http://eclipse.org/
http://www.jetbrains.com/idea/
http://www.mockobjects.com/

IDE. Since JTiger includes a main method from which to execute test cases, it is
merely a matter of specifying the class name to the IDE along with the
appropriate command line parameters. The class name is
org.jtiger.framework.FixturesRunnerMain and typically you would pass one or
more class names using the -fixtureClasses command line option.

Most IDEs allow you to specify a class name that contains the main method to
execute along with the appropriate command line parameters. As an example,
specify the class name "org.jtiger.framework.FixturesRunnerMain" and specify
the value "-fixtureClasses org.jtiger.samples.SampleTestFixture1" as the
program command line parameters. That's all there is to it - execute the
application, put in debug breakpoints, and use the full set of features of your
Integrated Development Environment.

Appendix B. Credits

Thanks to Stephen Glass and David Moore for reviewing my work and giving me
encouragement to keep fighting. Special thanks again to Dave for writing the XSL
for the JTiger HTML reports.

JTiger 2.1 User Documentation

- 33 -

